Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of different interlayer counter-ions on montmorillonite swelling; Key controlling factors evaluated by molecular dynamic simulations

Yotsuji, Kenji*; Tachi, Yukio; Sakuma, Hiroshi*; Kawamura, Katsuyuki*

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 29(2), p.63 - 81, 2022/12

The understanding of the swelling phenomenon of montmorillonite is essential to predict the physical and chemical behavior of clay-based barriers in radioactive waste disposal systems. This study investigated the key factors controlling crystalline swelling behavior of montmorillonite with different interlayer counter-ions by molecular dynamics (MD) simulations. On the basis of the comparisons between MD simulated and experimental results, the water content in the interlayer in five homoionic (Na$$^{-}$$, K$$^{-}$$, Cs$$^{-}$$, Ca$$^{-}$$ and Sr$$^{-}$$) montmorillonite was strongly correlated to the hydration number and the preference of an outer- or inner-sphere complex of each counter-ion. The detailed analysis for these results offer insights that the hydration number is controlled by the hydration free energy, the volume and the distribution of each interlayer counter-ion. The systematic MD simulations with virtually variable parameters clarified that the hydration free energy and the charge of interlayer counter- ions compete as influencing factors, and the control the formation rate of an outer-sphere complex of each counter-ion. The empirical relationships between these key factors will allow essential insights into predicting the swelling behavior of montmorillonite with different interlayer counter-ions.

JAEA Reports

Study on migration behavior of radionuclides in engineered clay barrier (II)

*; *; *

JNC TJ8400 2000-018, 79 Pages, 2000/02

JNC-TJ8400-2000-018.pdf:2.09MB

As a basic research for geological disposal of high-level radioactive wastes, diffusion behavior of radionuclides and corrosion behavior of overpack materials in clay buffer materials (bentonite) were studied. In the study on the diffusion behavior of radionuclides, basal spacing and water content were determined for water saturated, compacted Na-montmorillonite that is major clay mineral of bentonite. The apparent diffusion coefficients of Na$$^{+}$$, Sr$$^{2+}$$, Cs$$^{+}$$ and Cl$$^{-}$$ ions and their activation energies were also determined at different dry densities of montmorillonite. For all kinds of ions, the activation energies were found to increase as the dry density increased. These findings suggest that the diffusion mechanism of ions in compacted montmorillonite changed with increasing dry density. As a reasonable explanation for the changes in the activation energy, we proposed a multiprocess diffusion model, in which predominant diffusion process is considered to change from pore water diffusion to interlayer diffusion via surface diffusion when the dry density increases. The Na-montmorillonite is expected to alter by the ion exchange with Ca$$^{2+}$$ ions, which could be introduced from groundwater and/or cementitious materials in a repository. The apparent diffusion coefficients of Na$$^{+}$$ and Cs$$^{+}$$ ions and their activation energies were studied for Na/Ca montmorillonite mixtures in order to know the effect of this kind of alteration on the diffusion behavior of ions. It was found that the alteration of montmorillonite affected diffusion coefficients and the activation energies for both kinds of cations. These effects cannot be explained only by the pore water diffusion. The multiprocess diffusion model proposed in this study is suggested as the most reasonable explanation for the effects. The oxidation behavior of pyrite in bentonite during drying process was studied for understanding corrosion behavior of overpack materials in bentonite. There ...

2 (Records 1-2 displayed on this page)
  • 1